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Abstract We consider the d + 1-dimensional effective interface model of gradient type with
a quadratic interaction potential and a self-potential. Without the self-potential, the model
coincides with the d-dimensional massless Gaussian field. We show that for an arbitrary
repulsive self-potential which can be thought as interaction of the interface with a “soft
wall”, the field is pushed up at least to the same level when the original Gaussian field is
conditioned to be positive everywhere, namely the “hard wall” condition is imposed.
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1 Model and Result

Under the situation that two distinct pure phases like crystal/vapor coexist in space, hy-
persurfaces called interfaces are formed and separate these distinct phases. The effective
interface model of gradient type is one of the microscopic modelization of such phase sep-
arating interfaces. In this model, the interface in the d + 1-dimensional space is modeled as
the graph of a random height function from Z¢ to R and its distribution is given by a Gibbs
measure with an interaction depending on the gradients of the field. One of the problems
related to such interface is the study of localization/delocalization transition by the effect
of various external potentials and it has been quite active in recent years. In this paper we
consider a class of self-potentials which can be thought as interactions of the interface with
a “soft wall” and study its push up effect.

Letd >2and Ay =[-N,N]¥NZ¢ For a configuration ¢ = {@}reay € RAY = Qy,
consider the following Hamiltonian:

HY(¢)=Hy(@)+ > U@y,

xeAyN
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where

Hy (@) = - > G—¢) — g cane
N - 8d * ) ¢=0o0n A§, - 2 ’ N An>
{x. yINANF#P
[x—yl=1
Ay is a discrete Laplacian on Z¢ with Dirichlet boundary condition outside Ay and
(-, - )ay denotes [*(Ay)-scalar product. U : R — R is a self-potential. The corresponding
Gibbs measure is defined by

1
Py (d¢) = — exp{—HY (9)] [] do: [] dotde). (1
N

xeAy XEAN

where d¢, denotes Lebesgue measure on R, §, denotes Dirac mass at 0 and Z}V] is a nor-
malization factor. We denote Py the measure without the self-potential. In that case, the
measure coincides with the law of a centered Gaussian field on R*¥ with the covariance
matrix (—Ay)~!. It is well-known that the field has long range correlations under Py and
the following asymptotic behavior of the variance holds (cf. [9, Sect. 3], etc.):

glogN ifd=2,

2
8d ifd >3, @

Varp, (¢o) = (=Ay)~'(0,0) ~ {

as N — oo, where g, = % and g; = (—A)~1(0,0) for d > 3. A is a discrete Laplacian
on Z¢. The configuration ¢ = {¢y}ren v is interpreted as an effective modelization of (dis-
cretized) phase separating random interface embedded in the d + 1-dimensional space. The
spin ¢, denotes the height of the interface at the position x € A y. Under Py, the interface is
said to be delocalized when d = 2 because the variance diverges as N — oo. While, when
d > 3 the interface is localized because the variance remains finite. What we are interested
in are the behavior of the interface under the measure P\ and to clarify the effects of various
external potentials U. The earlier works have mainly focused on potentials of the following
type. We briefly summarize the typical results. For detail, see [9, 14, 15] and references
therein.

Pinning: This is the problem to study the effect of weak self-potential which attracts the
interface to the height level 0. For example, when the potential U is given by U(r) =
—bI(Jr| <a),a > 0,b > 0, this is called square-well pinning potential. In this case, the
field under P,f,] turns to be localized and massive for every d > 2 (cf. [2, 8]).

Entropic Repulsion:  When U is (formally) given by U (rr) = co- I (r < 0), this corresponds
to the “hard wall” condition:

Q1 = {¢; ¢ > 0 forevery x € Ay},

and the measure P corresponds to the conditioned measure Py ( - [Q}). The following
result is known in this case (cf. [3, 4]):

1
lim inf Py||——=¢. — V4
N—>ooxEAN ¢ N(‘ /logd(N)¢ 8d

for every d > 2, ¢ > 0 and § > 0 where log,(N) = (log N)?,log,(N) =log N for d >3
and Ay, = {x € Ay;dist(x, A}) > ¢N}. Namely, the field is pushed up to the level

salsz;>=1, ©)
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V4g4+/log,(N). Since the estimate (2) means that the height of the interface |¢yo| is of
order O(4/logN) when d =2 and O(1) when d > 3 under the measure Py, by (3) we
see that once the hard wall is settled at height level 0, the interface is pushed up further at
the order of 4/log N for every d > 2. Especially the interface turns to be delocalized when
d > 3 by the hard wall. This phenomenon is called entropic repulsion and is caused by the
random fluctuation of the interface that naturally arises from the Lebesgue measure d¢ in
the Gibbs measure (1), in other words, by entropic effects of the measure. The interface is
shifted above to keep enough width of the fluctuation.

Also, the competition between pinning and hard-wall is related to the problem of wetting
transition (cf. [15], etc.).

Now we are in the position to state the main result of this paper. The following theorem
means that entropic repulsion for the massless field occurs even under quite weak repulsive
force. We only require that the self-potential is non-increasing and the corresponding Gibbs
measure is well-defined.

Theorem 1 Let d > 2 and U : R — R be an arbitrary non-increasing, non-constant func-
tion which satisfies Z, < oo for every N > 1. Then, for every ¢ > 0,8 > 0 and y > 0, the
following holds.

Jim P (efx € Ani b = (1 = 0)y/4ga/logs(N)} = A n.c) =0. )

Also, if U satisfies the condition: there exists a € R such that U (r) = const. for everyr > a,
then we have

lim Py (¢{x € Ay ¢ = (1 +8)y4gay/log,(N)} = y Ay c]) =0. (&)

N—o00

In particular, a self-potential of the form U(r) = bI(r < a), b > 0 pushes up the in-
terface to the same level as the hard wall case and it does not depend on the parameter
b € (0,00],a € R. The effect of repulsive self-potentials was originally discussed in [13].
Our result gives a refinement of their result.

Remark 1 As we imposed in the theorem, some assumption on U is needed to obtain the
upper bound (5) of the same level as (4). For example, consider the case that U(r) = —Ar,
A > 0. Then random walk representation yields that E Py [p:] = AE,[tn] = O(N?) as
N — oo where 7y is the first exit time of simple random walk from A y. Therefore the
lower bound (4) is not optimal in this case.

The proof of Theorem 1 is given in the next section. Our strategy is as follows: by an FKG
argument, essentially it is sufficient to prove the lower bound (4) for every non-increasing
function which satisfies the following condition: there exist a_, a, € R and b > 0 such that
U(r)=0forr <a_ and U(r) = —b for r > a. . For such a potential U, the corresponding
Gibbs measure P{ can be represented as a weighted sum of a family of measures such
that each measure is conditioned to be greater than a_ and has a certain self-potential on a
subset of Ay (see (6) below). The weight of each measure gives a probability on P(Ay),
the family of all subsets of Ay and it can be compared with a Bernoulli measure on {0, 1}~
in the FKG sense. Also, the conditioned measure with the self-potential is compared with
the conditioned measure without the self-potential. As a result we can reduce our problem to
the study of entropic repulsion above a rarefied wall, that is, a hard wall which locates only
on the open vertices of Bernoulli site percolation on Z¢. This problem is studied in Sect. 3.
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Finally, we remark that throughout this paper below C represents a positive constant
which does not depend on N but may depend on other parameters. Also, this C in estimates
may change from place to place in the paper.

2 Proof of Theorem 1
2.1 Proof of the Lower Bound (4)

Let U : R — R be a non-increasing, non-constant function. Since adding a constant to the
Hamiltonian does not affect the Gibbs measure, we may assume that there exist a_,a; € R
such that 0 =U(a_-) > U(ay). Set Upg(r) :=U () I1a_ ay)(r) + U(ay) i, o0)(r) and U, :=
U — Uy. Then U, and U, are non-increasing functions. Now, for every non-increasing func-
tion f: Qy — R, we have

TVIfl= N E” [f-eXp{— > Un(%)”

xeAy

Uo
< ?V EV M o [exp{ Y U@ ”— EN[£1,

N xeAy

where the inequality follows from FKG inequality for P,f,j(’ . Note that for an arbitrary self-
potential U, FKG inequality holds for the measure PY (cf. [10, Appendix B]). Therefore for
the proof of the lower bound, it is sufficient to prove (4) for every non-increasing function U
which satisfies the following condition: there exist a_,ay € R and b > 0 such that U(r) =
0 for r <a_ and U(r) = —b for r > a,. From now on, we assume that U satisfies this
condition.

By using the expansion

exp{— > U(@)} = > [V —1DI(g = a_ forevery x € A),

xeAy ACApN x€A
we have
U
U By(A) U4
EPN[f]= Z —’;U EON (11, (6)
ACApy N

for any bounded measurable function f : Qy — R, where

Q]l\/]A(d(P) 1_[(6‘ Ulgx) _ I)IQ+ (A)(¢)e Hy (¢)

(A) xeA

x H dg. [ sotdey).
XeAy xX¢AN

(A) f l‘[(e Upx) _ l)IQ+ w@e Hy (¢)
xEA

< [T dex T ooy

xeAy X¢AN

and €21 (A) denotes the event {¢; ¢ > a forevery x € A} fora e R, A C VAR
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e @)
75
family of all subsets of A y. We denote the corresponding random variable by Ay. Similarly
to the pinning case (cf. [2]), we can compare this measure with a Bernoulli measure. Let
0 ={0;},cza¢ be ii.d. {0, 1}-valued random variables and v,, g € (0, 1) denotes its law with

Vo, =1)=g=1—-v,(0,=0).

Set py(A) := . Then ZAcAN pn(A) =1 and py gives a probability on P(Ay), the

Lemma 1 py is dominated by a Bernoulli measure on {0, 1}V from above and below in
the FKG sense. Namely, there exist - = q_(ay,b), g+ = q+(b) € (0, 1) such that

E"-[g(An)] < EP¥[g(An)] < B+ [g(AN)],

for every non-decreasing function g : P(Ay) — R, where Ay = Ay (o) under the measure
v, denotes the set {z € Ay; o0, =1}.

Proof Forevery y € Ay and A C Ay \ {y}, we have

~ ~ pN(A) >1
pn(y € Ayl Ay \ {3} = A) <+pN(AU{y})

(e By
U .
Ey(AU{yD
Now, set h14(¢) := [, (e V@) —1)- Io+ (4)(#), AC Ay. Then

EV(AU{Y) _ E™N[h o]
EY(A) EPN[h4)

> EPN[hiy]> (€ — )Py (¢y > ay) > (e" — 1C,

for some constant C = C(a) € (0, 1), where the first inequality follows from FKG inequal-

ity and the second inequality follows from the assumption that U = —b on [a, 00). Also,

EJ (Aupyh
N

U h) < ¢ — 1. Therefore, we obtain
=N

trivially we have

-nc_ _
@-nct1 —-9-
=1

E b = q+,

%

oy (v € An Ay \ (y} = A)

for every y € Ay and A C Ay \ {y}. Hence the well-known Holley’s criterion (cf. [11])
holds and we obtain the lemma. ]

We also have the following lemma.
Lemma 2 For every non-increasing function f:Qy — Rand A C Ay, it holds that
EN1f1< EP AR (A),

where the right hand side represents the expectation of the function f with respect to the
conditioned measure Py ( - |Qjﬁ (A)).

@ Springer



472 H. Sakagawa

Proof We can compute that
EO(f]

_ ZNPN(sz:(A»E,,N[

. —U@x) _ +
ST T hle: (A)]

x€eA
- Zy Py (2] (A))

Py + Py —Ubx) _ +
sr EUI [T - vfer @]

X€EA

= E™[fIQ7 (A,

for every non-increasing function f, where the inequality follows from FKG inequality for
the conditioned measure Py ( - |2} (A)). a

By Lemmas 1, 2 and (6), for every non-increasing function f : Qy — R and € > 0, we
have

B[ 1= B [ 1]
< EP[EN F19F (Av]]
< E"-[EN][ 19} (AW]]
< E'-[EM[ £192F (Ano]],

where Ay . = {z € Ay.; 0, = 1}. Note that EPN[ f|Q;F(A)] is non-increasing in A if f is
non-increasing. So the problem is reduced to the study of entropic repulsion above a rarefied
wall, that is, a hard wall which locates only on the open vertices of Bernoulli site percolation
on Z“ and the following proposition completes the proof of (4). The proof is given in the
next section.

Proposition 1 Letd > 2. Foreverya € R,q € (0,1),0<¢' <e< 1,8 >0and y > 0, the
following holds.

N—o0

lim E% [pN( £{x € Awes ¢ < (1 — 8)y/Agay/log,(N)}
> ylAwel | 2F (Ave) | =0.
Remark 2 The conclusion of this proposition was initially mentioned in p. 493 (3) of [1].

2.2 Proof of the Upper Bound (5)

Upper bound is easily given by comparison with the hard wall case. We may assume
that there exists some a € R such that U(r) = 0 for every r > a. Set U (r) := U(r) +
k(a—r)*I(r <a),k > 1.Then U® — U is non-increasing continuous function and stochas-
tic domination PY < PY" holds for every k > 1 (cf. [10, Appendix B]). Also PY* weakly
converges to Py( - |27 (Ay)) as k — oo. Therefore we have EPN [f1<E™[fIQF(AN)]
for every non-decreasing function f : 2y — R and the upper bound follows from that for
the hard wall case (cf. [3, 4]).
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Remark 3 Since the proof of the upper bound relies on the result of the hard wall case, we
can also obtain the upper bound of pointwise estimate (3) for Plf,/ . On the other hand, we have
not obtained the pointwise estimate of the lower bound. For the lower bound, the density
estimate of high points like (4) and FKG argument yields the pointwise estimate (3) in the
hard wall case (cf. [4, proof of (1.4)] etc.). But their FKG argument does not work well in
our setting. For example, if N < M, though stochastic domination Py ( - |Q;) < Py(- |§2A+,,)
holds, P{/ < P}, does not hold in general.

3 Entropic Repulsion Above a Rarefied Wall

In this section, we give the proof of Proposition 1. We will prove the quenched estimate:

lim Py (#{x € Aye; e < (1 = 8)y/4gay/log,(N)}

N—oo

> y|AN,e| |Q;(AN¢€/)) =0,

for v, a.e. o. For this purpose, we first characterize a typical good configuration of the
random hard wall. Then, for fixed such a realization, we proceed the conditioning argument
developed by [1, 3], and [5]. The basis of our proof is that by the long range correlation of
the field, a hard wall at positive density points should be sufficient to push up the interface.

3.1 Proof of Proposition 1; The Higher Dimensional Case

We first prove the higher dimensional case d > 3. Leta e R,0 <&’ <e < 1,6 >0,y >
0,9 € (0, 1) be fixed. We also choose > 0 small enough and L € N large enough. These
are specified later on. For z € T'; :=[0,4L — 119 N Z¢, set Akqs(z) = +4LZ)N Ang.
Since

{ﬁ{x € AN,S; ¢x =< (1 - 6)\/ 4gd\/ IOgN} > y'AN,£|}
c | J{#{x e A§ )i b < (1= 6)V/4galog N} = vIAL . (21},

zel'p
it is sufficient to show that

lim E" [PN(F§y|Qj(AN_S/))] -0,

N
where
F), ={t{x € Ay i ¢ < (1= 8)/4gay/log N} = y|Af I},
and
Ay =AY (0).

At first, we consider the configuration of rarefied wall distributed by the Bernoulli
measure v,. For x € 4L74, set 6, = I (o, = 1 for some z € B(x,nL)) where B(x,r) =
{y € Z% maxi<j<4 |y; — x;| < r} denotes a box on Z¢ with centered at x € Z¢ and side
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length 2r + 1. Under v,, {0y} eqrz¢ are iid. and E¥[6,]=1— (1 — @)@+’ Take L
large enough so that (1 — g)@1L+D! < +y. Then, large deviation estimate yields that

1
W(MxeAk#GX:0}ZZﬂA§A>

for every N large enough. Especially by Borel-Cantelli lemma, for v, a.e. o, there exists
some Ny = Ny(o) € N such that #f{x € ANE, 6,=1}>(1-— —y)IA .| for every N > N.
We fix such a realization o and prove that limy_, PN( 5y 1954 (AN,S )) =0 for Ay =
Ay (0).

For x € 4LZ? with 6, = 1, we choose a point z € B(x, nL) such that o, = 1 and denote it
asz=1z(x).SetDy :={x e Ak,& 6, =1} and 51\, :={z(x); x € Dy}. We also define mi‘ =
EPN[¢ | FE], vl = Varp, (¢ | F-) where FL = o (¢y;y € 0TS(x, L), x € Asz,g)a S(x,L)=
{yeZ% |y —x| <L} is aball on Z¢ with centered at x and radius L. For A C Z¢, 3T A =
{x ¢ A; |x—y| =1 for some y € A} denotes its outer boundary. Now, consider the following
events

Fi, ={t{x e A} sml < (1= 8)\/4ga/log N} = y|Af I},

F, ={8{x e Dyimk, < (1 -8)\/4g4/logN} = y|Dy|}.
Then we have

FO, O (Ay.e)

C(Fyy N(Fy, 4 ))V(FL,

2 c +
165y n (F%rs.%y) ne, (AN"E/))

U (Fiﬁ L NQE (A ),
o
Py(F 195 (Ay o))
< Py(Qf (Ay.) "' Py(Fy, N (F}B’ly)")
+Py(Fy 0 NFT 1920 (Ay )
+ Py (2 (Axe))” PN(F's 1, N QF (An )
= Iy + Iy +Ij.
We show that each term in the right hand side goes to 0 as N — oo.

Estimate on Iy:  On F)), N (F}, 1), we have
8.3

]j{xeANg,qu my <——8\/4gd\/logN}> y|A

@ Springer



Entropic Repulsion of the Massless Field with a Class of Self-potentials 475

Therefore,

0 1 c
Py(Fy, N (Fiy1,) )
1
<on [
|AK |

Under the measure Py ( - |FL), {¢, — mf}xeA}Lv , are i.i.d. centered Gaussian random vari-

1 1
> 1<¢>x —mk < —58\/4gd\/10gN> > 57'7L>:|- )

L
XEAN.s

ables with the variance vf < gq. Gaussian tail estimate shows that
P L 1 L 8
EN|I{ ¢y —m 5—58,/4gd,/10gN ‘}— <exp —ElogN .

Hence by large deviation estimate, the right hand side of (7) is less than e~V “ for N large
enough.
On the other hand, by the result of [4], we have

Py (R} (An.e) = Py(Q (M) = "V 10N,
Therefore we obtain limy _, o 1{, =0.
Estimate on 1 [2v At first, we have

1 2 c
Fl 1 rW(};‘l 1 )
2827 3s.gr

C {ﬁ{x GDN;mZL(x) —mk >

1
8‘/4gd\/10gN} > 1—6y2|A1LV4’8|}
5,/4gd,/logN}.

1
C { there exists some x € Dy such that mZL'(x) —mk > 1
Note that |Dy| > (1 — iy)|Akq€ |. Therefore, for the proof of limy _, o, II%, =0, it is sufficient

to show that for r := %8 J/4gq4 and L large enough it holds that

sup  sup Py(ml—mk >rlogNIQ} (Ay,)) =o(N™Y), 8)

XEA[N.S z€B(x,nL)

as N — oo.

For x € A}, and z € B(x, L), set ¥, . :=m% — m?. For the proof of (8), we first es-
timate the moment E*¥ [V .12 (Ay )] By random walk representation mZL can be rep-
resented as m% = Zyea+5(x,L) Hi(z,y)¢, where H(z,y) = PZ@TMS(M) =y), {& 0 is a
simple random walk on Z9, P, denotes its law starting at z and Ty+g(y.1) is the first hitting
time to 0TS (x, L). Therefore,

E™ [ 219 (Ay o]
< > IHu(zy) = Ho(x, 0)IE™[10,]195 (Ay.e)]-

yedtS(x,L)

By Lemma 4.1 of [1], there exists some constant C; > 0 such that, for every n small enough,
we have |H; (z,y) — H.(Z', y)| < CinL'~¢ for every L large enough, z, 7’ € B(0, nL) and
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y €37 8(0, L). Also, for every y € Ay we have
E™ (16,119 (An.e)] = EP [ @) 119 (An.e)] + E™V [(90) 71927 (An.o)],

where we denote 1+ := max{z, 0}, t~ := max{—r, 0} for r € R. By (3), we estimate that

EPN[(¢) 197 (An.)] < EPV[(9) 71925 (Ay)] < Cy/log N,
and by (2),

1

1 1 2
E™[(¢y)71QF (An.e)] < EPV[(9)) ] < EPV[((9))?]? = <5E”N[(¢y)2]> <cC.
Recall that EP¥[ f|Q}(A)] is non-increasing in A if f is non-increasing. Hence we have

sup EP¥[|¢, |12} (A.)] < Cy/logN,

YEAN

for every N large enough. By these estimates, there exists some constant C, > 0 such that
for every n > 0 small enough we have

EPN [ .19 (An.e)] < Cany/log N,

for every N large enough.
Now, if Con < %r then

Py(Vy: = ry/log N|QF (Ay.e)

1
< PN (fo,z - EPN [wlegj(ANe’)]l > Er\/ logN|Q:(~AN8’)>
e L e ©)
=P\ " 2vary, (g 4 BT

where the second inequality follows from Brascamp-Lieb inequality for the measure
Py( - 12} (An ) (cf. [7, Appendix]). Note that v, . is represented as a linear sum of
{dy}yeats,1)- Also, we have the following estimate on the variance of vy ..

Lemma 3 There exists some constant C3 > 0 such that for every n > 0 small enough, x €
A}, and z € B(x,nL) it holds that

Varpy (x.;) = Varpy (m? —my) < Cs.
Proof The same statement for the case d = 2 has been proved in Lemma 12 of [3]. Since

the proof of the case d > 3 is almost the same, we omit the detail. We have only to use the
following estimate on the Green function of the simple random walk in their argument.

Eo [Za@n =x+y) -1 = x))} = 2alyIDu(x*~) + 0 (x|,

n=0

for every y € Z¢, y = |y|u (cf. [12, Theorem 1.5.5]). O
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By (9) and Lemma 3, we obtain

2
PN(Ilfx.z > ry/log N|Q (Ay,.)) < N5,

Therefore, if 7 satisfie

Estimate on I3:  For I}, we have that

Py(F, ., NQ (ANS>)<E”N[]_[ Py(¢. = alF"); Flw].
z€Dy

For given X, if mE < (1 — 16)/4g4/TogN for z € Dy then

Py (¢, >a|fL)<1—PN<¢_—m <- ( ——5>,/4gd,/1ogN‘fL>

1 1 1\°
<l- ———\1——-6) 4gslogN ¢, 10
= CvieXp{ 2v§< 5 ) galog } (10)
for every N large enough. Since dist(z, 3" S(x, L)) > CL for every z € B(x,nL) and
lim; o v5 = g, for fixed z, we have inf,cp( ) vE > (1 — lg)ng for L large enough.

Hence, there exist some C > 0 and B > 0 such that the rlght hand side of (10) is less than
1 — CN~?*# in this case. Since the number of such z € DN is greater than 4y|DN| on

3,y and [Dy] = (1= {p)|Ag, |, we obtain Py(F} , N @ (Ay) <e N for
77 ’ 7037

every N large enough. By combining this estimate with the lower bound of Py (2} (Ay /),
we obtain limy_, o Iﬁ, =0.

In conclusion, choose 1 > 0 small enough first to satisfy all the conditions above and
choose L large enough accordingly. Then, by proceeding all the argument from the begin-
ning, we can obtain the desired result.

3.2 Proof of Proposition 1; The Two Dimensional Case

Next, we consider the case d =2. Leta e R,0<é&' <e<1,§ >0,y > 0,9 € (0,1) be
fixed. We also choose «, 8,1 € (0,1). « is close to 1 and B, n are close to 0. These are
specified later on. Set A%, (2) := (2 +4N*Z*) N Ay, z €T :=[0,4N* — 1]* N Z?. Since

{t{x € Anei e < (1 —08)/4galog N} = y[Ap.|}
c | {#fx e A @1 e = (1= 8)V/Agalog N} = y|AY ()1}

zel'y
it is sufficient to show that
EY[Py(Fy, |95 (Ay.e)] = o(N7>),
as N — oo, where
F), = {gf{x € Ay pr < (1= 8)/Ag2log N} > y|AY I}

and A%, = A%, (0).
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At first, we consider a partition of Ay . into boxes with side-length 2N# + 1. The bound-
aries of neighboring boxes intersect and for simplicity, we always assume that Ay . and
every boxes with centered at AY, ,, side-length 2N* + 1 can be divided into such boxes

without reminder. We denote by l'[f, the set of these boxes in Ay .. For every B Hﬁ,, large
deviation estimate yields that

1
Vg <1:f{x €B;o,=1}< Eq|3|> <o CIBI,

Hence we have

qIBI)

for every N large enough. Especially by Borel-Cantelli lemma, for v,-a.e. o, there exists
some Ny = Ny(o) € N such that for every N > Nj it holds that §{x € B; o, =1} > %q|B|
for every B € Hﬁ,. We fix such a realization o and prove that PN(Fbp,ymj(AN,g/)) =
o(N™2%) as N — oo for Ay . = Ay .. (0).

Now, consider the following events

N | =

Vg (there exists some B € I'[’i, such that f{x € B; o, =1} <

_ 28
<e N7,

Fy, ={t{x € AY sm$ < (1 —8)/4glog N} = y|AS I},
F(S2 = {there exist some x € Ay, and y € B(x,nN%)

such that |m§ — m§| > 8/4g,log N},

where we set m% = E"N[¢,|G%1, v* = Varp, (¢,|G%) and G% = o (¢y; y € 9T B(x, N*), x €
A% ). Then we have

Fy,NQf(Aye) C(F), N (F;&%yy) U F; U(F LN (F;S)“ N (Ay.e)),

1
3.3
and
Py(Fy, 19} (Ane)) < Pr(Q) (Ave)) {Py(Fy, N (F;,%yr') + PN(F;)
I 2
+Pu(Fl 4, 0P N2 (A)
= Iy + Iy +I.
We estimate each term in the right hand side.

Estimate on 1,: I, can be estimated in the similar manner to the higher dimensional case.
We have that

PN(F(gy N (F%IS,%)/)C)

1 1 1
SEPN[PN< X Z I(¢x—m§‘§—§8\/4gzlogN>Z§y

|AY el

g;,)] (11)

o
XGAN,E
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Under the measure Py (- |GY), {¢x —m% ) e g, are 1.1.d. centered Gaussian random variables
with the variance v¥ = g, log N*(1+0(1)) as N — oo and Gaussian tail estimate shows that

1
EN [1 (qu —-m® < — 55«/4g210g N)

52
< ——1logN ;.
gN]_eXp{ 2o ° }

Hence by large deviation estimate, the right hand side of (11) is less than e OVl =

e=N*"* for N large enough.
On the other hand, by the result of [3], we have

PN(Q:' (Ane)) = Py (Q:(AN,S’)) > o~ CliogN)*
Therefore we obtain that I, = o(N~**) as N — oo.

Estimate on I5: For I3, we have

1
Py(Fi,) <CN* sup  sup PN<|mz —ml| = 18\/4g210gN>.
q

xeA%‘e yeB(x,nN¥%)

For x € A}, and y € B(x,nN®), my — m} under Py is a centered Gaussian random vari-
able and by Lemma 12 of [3], Varp, (m$ — m‘;f) < Cyn for some C; > 0 if n > 0 is small
C
enough. Therefore Gaussian tail estimate yields that Py (F 123) < e 10s N g every N
I

large enough. Combining this estimate with the lower bound of Py (22} (Ay »)), we obtain
that I]%, = o(N~%) if 5 is small enough.

Estimate on I3:  For I3, we have

Fi oo N(FL) N (Ay,e)
2827 30 ¢ ’

1
- {ﬁ{x €AY m‘; < (l — Z(S>\/4gzlogN for every y € B(x, ;71\/0‘)}

>

)/IA‘}‘V,SI} N (Aye)

| =

1
C iﬂ{x IS A(IYV,E; oy —mg‘ > —<1 — §8>\/4g210gN
1
forevery y € B(x, )N*) N Ay ¢ ¢ > §y|A‘,’v’£| ,
for every N large enough. Therefore,

1 2 \¢ +
PN(F%&IV N (F%B) N (Ay.e))

2

1 1
sE"N[PN(lAa | > ;xzimgm, (12)
N,

o
xeANj

where
1
Ly = I(¢y —m§ > —(1 — §6>\/4g2 log N for every y € B(x,nN%) ﬂAN,£/>.
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Under the measure Py ( - [G%), {Cx}re g, are independent {0, 1}-valued random variables.
Therefore, if we have '
lim sup EV[¢,|G%]1=0, (13)

N—o00 a
XeAY

then we can apply a concentration estimate (e.g. [6, Corollary 2.4.14]) and the right hand
side of (12) is less than e~ €/AV.el = ¢=CV*™ Hence we obtain that I3, = o(N %),
Finally, for the proof of (13), we prepare the following lemma.

Lemma 4 Let d = 2. Assume that A C 7 satisfies the following condition: there exist
Bo € (0, 1) small enough and Cy € (0, 1) such that for every N large enough, it holds that
|[BN A| > Cy|B| for every B € Hﬁ,‘). Then, for every ¢ > 0 and r < 1, it holds that

lim Py (¢x > —r4/4g21og N foreveryx € Ay N A) =0.

N—o00
The proof of this lemma is given in the end of this section. Now, for every x € AY, ,,
{py — m‘:‘ }yeB(x,no) under Py (- |GY) is a centered Gaussian field with the covariance matrix
(—Ay«)"". Therefore, by taking a, f € (0, 1) as 2(1 — 18) < 1 and £ = B, we can apply

Lemma 4 and obtain (13). Note that |[BN Ay /| > %q|B| for every B € Hfi, N B(x,nN%) by
the choice of 0.

Proof of Lemma 4 The proof is given by a multi-scale analysis and is the same as the proof
of [5, Theorem 1.3]. Roughly speaking, if the region A spreads evenly over Z> and has
positive densities in every boxes with small scale, then the event that the height of the field
is greater than —r+/4g;log N, r < 1 for every points in Ay . N A is incompatible with the
fact that the 2-dimensional massless field has spikes of height a'v/4g; log N in the region of
the length scale O(N%), 0 <a < 1 (cf. [3, 5]).

We introduce some notations. Set 1'[9\, ={{xhxeANAy,} and for 0 < < 1, let
1%, be the collection of adjacent sub-boxes of side length 2N* 4+ 1 in Ay, such that
Ay =Us eng, B. For simplicity we assume that A y . can be divided into such boxes with-
out reminder. Next, we define a collection of boxes as follows. Fix % < a < 1, an inte-
ger K > 2 and let «; := K’T"*'a, 1 <i <K+ 1. Wefirst set 'y, := H‘;,‘. Then assuming
that I',, has been defined, for any B € I'y;, we draw a square of side length N* 4 1 with
the same center as B. The collection of sub-boxes in ITy "' that intersect that square is
called I'p o,,, and let 'y, := UBeral_ "B a;,,- For any box B, we write xp for the center
of B and ¢p := EPN[qﬁXBl]-'BB] where Fy =0 (¢,;x € A), A C Z%. Next for 0 < < 1 and
2<k<K+1, we set

2atk=1) ;12
ny = NEH R 0

and

Dy = {B"; ¢p > (@ — a;)n(1 — yx)\/4g210g N forevery 1 <i <K},

Cr:= 8Dy = m},
where « > 0 is a constant in the proof of [5, Theorem 1.3], yx := % and B® denotes a
sequence of boxes (By, ..., By) which satisfies By D B, D--- D Byand B; e I'y;, 1 <i <k.
Actually, the difference to the proof of the lower bound of [5, Theorem 1.3] is only the

definition of I1%,. The definition of I'g o, ,, and Ty, ,, changes accordingly.
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Now take o < 1,17 < 1 close to 1 and K large enough so that an(1 — yx) > r. Then we

have

{¢X <ry/4grlogN forevery x € Ay N A}

C {ﬁ{x EANeNA G = an(l — VK)v4g210gN} < nK+l}
C Cx -

Therefore, by symmetry it is sufficient to prove limy_, o Py (Cg_ ) = 0. This can be proved
by the completely same argument to the proof of the lower bound of [5, Theorem 1.3]. In
fact, the difference is only the estimates which concern with [I'g 4, [, B € Iy and if Sy
is less than the parameter ax = % (N%K is the smallest mesoscopic scale in the multi-scale

analysis), then by our assumption it holds that |['p o, | > %ColBl > CONZT“ for every box
B € 'y, . This estimate is the same as the one in [5] and all the arguments there work well. [
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